The Neumann Sieve Problem and Dimensional Reduction: a Multiscale Approach
نویسنده
چکیده
We perform a multiscale analysis for the elastic energy of a n-dimensional bilayer thin film of thickness 2δ whose layers are connected through an ε-periodically distributed contact zone. Describing the contact zone as a union of (n − 1)-dimensional balls of radius r ≪ ε (the holes of the sieve) and assuming that δ ≪ ε, we show that the asymptotic memory of the sieve (as ε → 0) is witnessed by the presence of an extra interfacial energy term. Moreover we find three different limit behaviors (or regimes) depending on the mutual vanishing rate of δ and r. We also give an explicit nonlinear capacitary-type formula for the interfacial energy density in each regime.
منابع مشابه
Damage identification of structures using second-order approximation of Neumann series expansion
In this paper, a novel approach proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). As the number of sensors used to measure modal data is normally limited and usually are less than the number of DOFs in the finite element model, the model reduction approach should be used to match with incomplete measured mode shapes. The second-order a...
متن کاملMultiscale Analysis of Transverse Cracking in Cross-Ply Laminated Beams Using the Layerwise Theory
A finite element model based on the layerwise theory is developed for the analysis of transverse cracking in cross-ply laminated beams. The numerical model is developed using the layerwise theory of Reddy, and the von Kármán type nonlinear strain field is adopted to accommodate the moderately large rotations of the beam. The finite element beam model is verified by comparing the present numeric...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملA Systematic Coarse-Scale Model Reduction Technique for Parameter-Dependent Flows in Highly Heterogeneous Media and Its Applications
In this paper, we propose a multiscale approach for solving the parameter-dependent elliptic equation with highly heterogeneous coefficients. In particular, we assume that the coefficients have both small scales and high contrast (where the high contrast refers to the large variations in the coefficients). The main idea of our approach is to construct local basis functions that encode the local...
متن کاملApproximate solution of fourth order differential equation in Neumann problem
Generalized solution on Neumann problem of the fourth order ordinary differential equation in space $W^2_alpha(0,b)$ has been discussed, we obtain the condition on B.V.P when the solution is in classical form. Formulation of Quintic Spline Function has been derived and the consistency relations are given.Numerical method,based on Quintic spline approximation has been developed. Spline solution ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006